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Using general thermodynamic arguments for an incompressible lattice system, we demonstrate that the
effective x must be a complicated function of temperature, composition, polymerization indices, and the
coordination number of the lattice, even though the barex is merely a parameter. We go beyond the random
mixing approximation and present a lattice theory of mixtures which yields an effectivex consistent with
experiments.@S1063-651X~96!04409-1#

PACS number~s!: 05.70.Fh, 82.60.Lf, 64.60.2i

I. INTRODUCTION

Conventional mean-field or regular solution theories are
primarily based on the random mixing~also known as
Bragg-Williams! approximation~RMA! @1,2#. The basic as-
sumption is that there isno correlation between neighboring
interacting species, an assumption that should be good at
infinite temperatures. However, because of the nature of the
approximation, theories based on it have a limited applica-
bility from a quantitative point of view. It is in connection
with polymers where such a theory known as the Flory-
Huggins theory~FHT! @3,4# has been used almost exclu-
sively everywhere. The use of the theory even beyond its
range of applicability@5# has made the field very murky~see
below!. Our aim here is toclarify the situation.

In particular, we explicitly demonstrate that even a simple
lattice model is capable of explaining many of the observed
features in experiments. We accomplish this by going be-
yond the RMA and present a theory of incompressible mix-
tures. The theory is an approximation but applicable every-
where, even near phase transitions. In the following, we
specifically consider the FHT, but the discussion is equally
applicable to any regular solution theory or any conventional
mean-field theory.

The simplest model of a polymer mixture~solution, blend,
etc.! is to treat a linear chain as a self-avoiding walk on a
regular lattice of coordination numberq and to treat mono-
mers~including solvent molecules! as having identical sizes.
The model is defined in the next section. The interaction
between monomers is restricted to neighboring units and is
described by a dimensionless parameterx5bq«, b51/T,
having atrivial dependence onq and the temperatureT. ~We
set the Boltzmann constant to be unity.! Here, one may take
the parameter« to denote the energy of interaction between
unlike units. The interaction energy in reduced units is
bE5xfc /q, wherefc is the density of contacts between
unlike monomers and must be treated as a new and indepen-
dent density in addition to the composition. Thus, the en-
tropy S must also be a function of these two independent
densities. Such an ensemble or any equivalent ensemble with
two variables is needed to provide a complete thermody-
namic description, the free energies of various ensembles
being related by proper Legendre transforms. In the RMA,
the following holds.

~a! The contact densityfc is given byfc5f̂c
05qfmfm8

regardless of« andb. Here,fm andfm8 are the monomer
densities of the two interacting species.

~b! The entropy of mixingSmix is the same as for the
athermal state (x50) and is independent of« andb, even
though the interactions are present.

Both these conclusions are incorrect@5# for the original
model for bothfc andSmix must change withx ~also see
below!. In particular,Smix(x) or the entropyS(x) must pos-
sess a maximum atx50 and, therefore, must decrease as
interactions are introduced@6#. Similarly, fc must increase
or decrease as the interaction becomes more favorable or
unfavorable, respectively. Flory@4# had already realized the
seriousness of~b! and had postulated that~c! the change
Sint in Smix due to interaction must again be of the form
xsfmfm8 and, therefore, must add an ‘‘entropic’’ partxs that
hasno temperature dependence.

This conjecture is also incorrect for this additional change
Sint must vanish atx50 whereas the Flory form has the
same value for allx. Note thatfc andx, both being dimen-
sionless, can be treated as functions of dimensionless quan-
titiesfm andb«, but not functions of«, which is not dimen-
sionless. This again shows thatxs cannot be temperature
independent, since it must vanish at«50.

In spite of the drastic approximations, the FHT theory is
widely used in fitting experimental data. This results in an
effectivexeff that is found to have a nontrivial dependence
on temperature, composition, polymerization indices, etc.
@7–10#. The complicated behavior ofxeff has mystified
workers in the field for a long time and various attempts
@7–15# have been made to explain the unusual behavior.
More recently, Hammouda and Bauer@10# have concluded
that the composition dependence inxeff cannot be attributed
to the compressibility of the mixture. Therefore, we consider
an incompressible system here. In the following, we take
xeff5x̄eff[xfc /qfmfm8 as our main emphasis is to study
phase separation.

Thermodynamics requiresS to be a function of two inde-
pendent densitiesfm andfc when«Þ0, in addition to other
parameters. Consequently,x̄eff must depend, in general, on
q, molecular weightsM andM 8, x, andfm in any complete
theory, notwithstanding the fact that the barex is a param-
eter in the lattice model; one does not need to invoke com-
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pressibility for such a dependence. We present a lattice
theory of the model of polymer blends and solutions that not
only satisfies thermodynamics, but also predicts phase sepa-
ration and yieldsxeff that is consistent with experiments. The
theory provides closed form expressions for the entropy and
the free energy and is applicable everywhere.

II. THERMODYNAMICS

Let the two species be denoted byA and A8, both of
which may be polymers containingM5L11 and
M 85L811 monomers, or a polymer (M.1) and solvent
(M 851). Let fm andfm8 be their monomer densities, and
f and f8 be their bond densities:Mf5Lfm ,
M 8f85Lfm8 . Further, letfa , fa8 , andfc denote the den-
sities of unbondedAA pairs, unbondedA8A8 pairs, and
AA8 pairs, respectively. On the lattice, we have the follow-
ing identities: qfm52f12fa1fc , qfm8 52f812fb

1fc , with fm1fm8 51. The latter is the incompressibility
condition. Thus, we have only twoindependentdensities that
we take to bef or fm andfc in the following. Correspond-
ing to the densitiesf and fc , we have two independent
activities that we denote byK and w, respectively, with
w5exp(2b«). The total partition functionZ of the lattice
model is@6# Z5SV(q,M ,M 8,B,Nc)K

BwNc, whereV is the
number of ways of putting the polymer mixture on the lattice
of N sites and the sum is over all possible values ofB and
Nc , consistent withN, q, M , andM 8. Here,B is the total
number of bonds of allA polymers andNc is the number of
nearest-neighborAA8 monomer pairs. We have shown ex-
plicitly the entire set of quantities~excludingN) V depends
on, even though we will usually only exhibit the dependence
on B andNc ~or, equivalently,f andfc) in the following
for convenience.

For a system in which polymers are of a fixed length, as
we consider here, an entire polymer must be added or re-
moved from the system. Therefore,KL acts as the activity
perA molecule. With this understanding, there is no harm in
thinking of K as the activity per bond. The constraint of
fixed-length polymers is taken care of byV: it contains only
thoseconfigurationsthat are consistent with having polymers
of fixed lengths. In caseA denotes a monomeric species,B
must be replaced by the number of monomers. Now,K de-
notes the activity for a monomer.

Let us introduce the entropyS(f,fc)5 lnV/N, where
f5B/N andfc5Nc /N in the thermodynamic limitN→`
that is always implied below. Notice thatS is a function of
two densitiesf andfc corresponding to two activitiesK and
w. To be precise,bm5 lnK is the reduced chemical potential
for the bond densityf. In equilibrium, the reduced free en-
ergy v5 lnZ/N52F/T is a function ofK andw, and is re-
lated to the entropy by the Legendre transform
v(K,w)52bF(K,w)5S(f,fc)1f lnK1fclnw, with

]S/]f52 lnK52bm, ]S/]fc52 lnw5b«. ~1!

From the convexity of the free energyv, we observe that

~]f/]K !w.0, ~]fc /]w!K.0, ~2!

the inequalities turning into equalities asK→` or w→`,
respectively. From the free energy ṽ(f,w)
52bF̃(f,w)5S(f,fc)1fclnw, customarily used in lit-
erature@4# because the ensemble with fixedf and T are
easily prepared in experiments, we have

]ṽ/]f52bm, ~]fc /]w!f.0, ~3!

the inequality again turning into an equality asw→`. Thus,
fc must be a monotonic increasing function ofw.

For w51, we have an athermal mixture. In this
case, we can introduceVath(q,M ,M 8,B) by summing
V(q,M ,M 8,B,Nc) over all possible values ofNc consistent
with a fixedN, q, M , M 8, andB. The partition function now
becomesZath5SVath(q,M ,M 8,B)KB. Hence,Vath.V, i.e.,
Sath.S(x[0): the entropyS achieves its maximum value in
the athermal state@6# and decreases from its maximum value
Sath5 lnVath/N as interactions are introduced. Thus, the
athermal entropy is the maximum possible entropy and oc-
curs whenb«50, i.e.,w51.

For w51, and simple fluids (M5M 851), fc is given
exactly byf̂c

05qfmfm8 For polymers, we expect the value
of fc to be smaller: The proximity of monomers of a given
species required for bonding is equivalent to reducing un-
bonded bond densitiesfmu5fa1fc/2 and fmu8 5fa8
1fc/2 and, therefore,fc must decrease. This argument
must be valid even when interactions are present. Therefore,

fc~x!,f̂c~x!, ~4!

the caret indicating simple fluids. For fixedw, we can treat
fc to depend onq, M , M 8, fm , andw. Hence,x̄eff is also a
function of these variables. We do not need compressibility
to account for such dependence.

We can summarize the thermodynamics of the model by
the following fundamental thermodynamic relations:

dS52bmdf1b«dfc52bmdf1bdE,

dṽ52bmdf2«fcdb52bdF̃,

dv5fd~bm!2«fcdb52bdF. ~5!

III. NEW THEORY

We now present a theory which is an extension of a
theory of polymer solutions (M 851) developed recently
@16# to the present case (M 8.1). We approximate the lattice
by an infinite tree~Bethe lattice! of the same coordination
number, on which the model is solved exactly. This ensures
that thermodynamics isalways satisfied. Moreover, it has
been argued recently that the Bethe lattice calculations are
also superior to mean-field theories@17#. The method of so-
lution on the tree is standard and well known@18#. There-
fore, we only quote results for a binary system. Extensions to
multicomponent systems is straight forward and will be re-
ported elsewhere.

We break the total chemical potentialm5math1m int and
the total entropyS5Sath1Sint into athermal and interaction
parts, the latter vanishing in the athermal limit. We find
(r5q21)
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bmath5~1/L !ln~fn /g!2~m/m8L8!ln~fn8/g8!

1~12m/m8!ln~2fu /qr !, ~6!

bm int5~qm/2!@~n/m!ln~fa /fa
0!2~n8/m8!ln~fa8/fa8

0!#,
~7!

Sath5~q/2!lnr2fnln~fn /g!2fn8ln~fn8/g8!

1fuln~2fu /qr !, ~8!

Sint5faln~fa
0/fa8!1fa8ln~fa8

0/fa!1fcln~fc
0/fc!, ~9!

wherefn5fm /M andfn85fm8 /M 8 are number densities of
the two species,fu5fmu1fmu8 5q/22(f1f8) is the den-
sity of all chemically unbonded bonds,m5M /L,
m85M 8/L8, n5m22/q, n85m822/q, andg ~or g8) is 1 or
q/2r if M ~or M 8) is 1 or larger, respectively. Forw51,
fa5fa

05fmu
2 /fu , fb5fb

05fmu82 /fu , and fc5fc
0

52fmufmu8 /fu . This ensures thatm int50 andSint50 when
w51. For w51, fc5fc

052Afa
0fa

0. If now q→`,
fc→qfmfm8 . Thus, the FHT corresponds tow→1, q→`,
as claimed earlier@16#.

In order to derive Eqs.~6!–~9!, we first obtainw andK in
terms of densities so that we can use them in Eq.~1!. We
integrate Eq.~1! to obtainS. The constant of integration is
fixed by matching the present entropy forf850 ~this repre-
sents a melt ofA polymers! with that obtained in Ref.@16#.
Thus,S is obtained uniquely~on the Bethe lattice!. For w,
we obtain

w5fc/2Afafa8, ~10!

as was also the case for polymer solutions@16#. Incidentally,
Eq. ~10! was earlier derived by Rushbrooke@19# in one di-
mension and by Guggenheim@20# for the general case using
a very different method.

We use Eq. ~10! to obtain fc and x̄eff . We show
x̄5x̄eff /q for q56, 8, and 10,w50.5, in Fig. 1 and for
w50.7, 0.8, and 0.9,q56, in Fig. 2 for a solution
(L51000, L850, full symbols! and a symmetric blend
(L5L851000, empty symbols!. Note x̄blend,x̄solution, the

difference decreasing asw→1. The minimum in x̄solution

moves towardfm50 asw→1, thus makingx̄solution almost
monotonic. For the symmetric blend, the minimum stays at
fm5 1

2.
The free energyv is also easily calculated and broken

into vath andv int , the latter vanishing whenw51:

v int5
1

2 S q221
2

M 8D ln~f82mu /fufa8!,

vath5
L8

M 8
lnr2

1

M 8
ln~fn8/g8!1

1

2S q221
2

M 8D ln~2fu /q!.

~11!

The free energyv depends on quantities pertaining to the
primed species for which no activity~similar to K) is al-
lowed in the partition function~and the densityfu of chemi-
cally unbonded bonds for which, again, no activity is al-
lowed!. Thus,v denotes the adimensional osmotic pressure
through a membrane across which the primed species is al-
lowed to migrate and is always non-negative.

For w.wu , see below, there is a line of critical
points as M→` at K5Kc(w)5(l8/r )1/M8w12r , where
l85g8(M 822L8/q). Forw,wu , the theory predicts phase
separation betweenA- andA8-rich phases. Both results can
be checked easily. The critical point for phase separation is
given by

wc5Aa~Arr821!/~a1r!, ~12!

with r5Mr 811, r85M 8r 811, r 85q22, anda5M /M 8.
For q→`, we find thatwc→12(AM1AM 8)2/2qMM8.
Hence,xc52qlnwc→(AM1AM 8)2/2MM 8, obtained in the
FH approximation. AsM→`, wc→wu5A121/r8 at the
u-pointK5Ku5Kc(wu), w5wu , M→` which is a tricriti-
cal point in our theory~see Ref. @16#!. For q→`, or
r8→`, wu→1 as suggested earlier. For simple fluids, one
must setM5M 851 in the above theory. Thus, our theory
also provides a consistent theory of a simple fluid.

FIG. 1. x̄5x̄eff /q for w50.5 andq56, 8, and 10~see arrows!
for a solution~filled symbols and left axis! and for a symmetric
blend ~empty symbols and right axis!.

FIG. 2. x̄ for w50.7, 0.8, and 0.9, top, middle, and lower pair,
respectively, as arrow indicates. See legend for Fig. 1.
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IV. CONCLUSIONS

We conclude with the following two observations: In a
continuum theory, we do not have any geometrical con-
straints betweenfa , fa8 , and fc as on a lattice, see the
beginning of Sec. II. Therefore, one cannot reduce the prob-
lem to two independent densities. In general, all three pair
densities must be treated as independent. Hence, we need to
introduce three independentx parameters. It is only on a
lattice that a suitable combination of the threex parameters
uniquely describes the statistical mechanics of the binary
system. Thus, no justification can be offered for a lattice
theory containing two combinations, as is the case in the
theory by Lipson@21#. Such a theory necessarily disregards
the geometrical constraints imposed by the lattice.

The theories presented by Bateset al. @8# and by Dudow-
icz, Freed, and Madden@14~a!# do provide a complicated
behavior of the effectivex parameter.~The effectivex there
is defined in a different way than we have.! However, the
theory by Bateset al. @8# violates the fundamental thermo-
dynamic relation (]fc /]w)f.0 @see Eq.~3!# which states
that the specific heat must be non-negative. It is easy to
calculate the specific heatCf at constantf using the result
given in Ref.@8#. We findCf5C(fmfm8 )

3/2/Auxs2xu,0,
where C is an uninteresting negative quantity andxs is
quoted in Ref.@8#.

A similar problem occurs in the lattice cluster theory of
Fred and co-workers@14# because of the error introduced
by truncation. The free energy is given as a finite-order
polynomial in «* ~which in our notation is 2«b) and 1/q.
The expansion is carried out about the point«*51/q50.
Hence, the truncation is valid near the expansion point, the
expansion being a high-temperature expansion. From a com-
parison with Monte Carlo simulations, it has been suggested
that the theory due to Dudowicz, Freed, and Madden@14~a!#
is highly reliable for u«* u,0.3 for q56. However,

problems appear at low temperatures. Consider the specific
heat Cf for large q in this theory for a solution:
Cf>C0@11(fm2fm8 )«*1(1212fmfm8 118fm

2fm8
2)«*

2
/2#,

where fm8 is the solvent density and C0

52(xfmfm8 )
2/q.0. It is evident thatCf is not necessarily

non-negative. For example, forfm5f85 1
2, Cf is negative

for u«* u>1.5. Thus, the theory is valid only at high tempera-
tures. The problem is worse for the Pesci-Freed theory
@14~b!# which, according to Dudowicz, Freed, and Madden
@14~a!#, should be valid in theM→` limit. In this theory
Cf5C022@A61A713(A81A88)#fmfm8 where A6, A7,
A8, ~polymer!, andA88 ~solvent! are given in Ref.@14~b!#.
Again, Cf need not be non-negative. For example, take
fm50.9, thenCf is negative for all«*>20.3. Since the
expansion terms have no definite signs, the problem will per-
sist even if one goes to higher orders. In any case, the trun-
cation becomes invalid as phase transitions are approached
because of associated singularities in thermodynamic quan-
tities.

V. SUMMARY

In summary, we have shown thatTx̄eff or xSmust depend
on fm andw. We have presented a theory of blends~and
solutions! that seems to exhibit qualitatively correct behav-
ior. This is a closed form lattice theory of an incompressible
system valid everywhere, including low temperatures. In
contrast, some of the more recent theories are not.
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