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Effective y in a lattice theory of mixtures
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Using general thermodynamic arguments for an incompressible lattice system, we demonstrate that the
effective y must be a complicated function of temperature, composition, polymerization indices, and the
coordination number of the lattice, even though the haie merely a parameter. We go beyond the random
mixing approximation and present a lattice theory of mixtures which yields an effegtivensistent with
experiments[S1063-651X96)04409-1

PACS numbg(s): 05.70.Fh, 82.60.Lf, 64.66.i

. INTRODUCTION (a) The contact density, is given by .= 0= dmd’,
regardless ot and B. Here, ¢, and ¢/, are the monomer
Conventional mean-field or regular solution theories argyensities of the two interacting species.
primarily_ based on th_e ra_mdom mixingalso knovv_n as (b) The entropy of mixingS,,, is the same as for the
Bragg-Williams approximation(RMA) [1,2]. The basic as-  5ihermal state =0) and is independent of and 8, even
sumption is that there iso correlation between neighboring though the interactions are present

interacting species, an assumption that should be good at Both these conclusions are incorrd6y for the original

infinite temperatures. However, because of the nature of the .
approximation, theories based on it have a limited applicamOdel for both¢, and Sy must change witty (also see

bility from a quantitative point of view. It is in connection below). In pa}rtlcular,Smix(X) or the entropyS(x) must pos-
with polymers where such a theory known as the Flory-S€SS @ maximum a¢=0 and, therefore, must decrease as
Huggins theory(FHT) [3,4] has been used almost exclu- interactions are mtrogjuce[di].. Similarly, ¢, must increase
sively everywhere. The use of the theory even beyond itS" decrease as the _mteractlon becomes more favorable or
range of applicability5] has made the field very murkgee unfgvorable, respectively. Flofy] had already realized the
below). Our aim here is talarify the situation. seriousness ofb) and had-postulated th@t) the change

In particular, we explicitly demonstrate that even a simpleSint in Smix due to interaction must again be of the form
lattice model is capable of explaining many of the observed(s#m®m and, therefore, must add an “entropic” pay{ that
features in experiments. We accomplish this by going behasno temperature dependence.
yond the RMA and present a theory of incompressib|e mix- This COﬂjeCthe is also incorrect for this additional Change
tures. The theory is an approximation but applicable everySnt Must vanish aty=0 whereas the Flory form has the
where, even near phase transitions. In the following, wesame value for alk. Note that¢. andy, both being dimen-
specifically consider the FHT, but the discussion is equallysionless, can be treated as functions of dimensionless quan-
applicable to any regular solution theory or any conventionalities ¢, andBe, but not functions ot, which is not dimen-
mean-field theory. sionless. This again shows thgt cannotbe temperature

The simplest model of a polymer mixtu¢solution, blend, ~ independent, since it must vanisheat 0.
etc) is to treat a linear chain as a self-avoiding walk on a In spite of the drastic approximations, the FHT theory is
regular lattice of coordination numbgrand to treat mono- Widely used in fitting experimental data. This results in an
mers(including solvent moleculgsas having identical sizes. effective . that is found to have a nontrivial dependence
The model is defined in the next section. The interactiorPn temperature, composition, polymerization indices, etc.
between monomers is restricted to neighboring units and is7—10. The complicated behavior ok has mystified
described by a dimensionless paramegerBqe, B=1/T,  Workers in the field for a long time and various attempts
having atrivial dependence og and the temperature. (We ~ [7-15 have been made to explain the unusual behavior.
set the Boltzmann constant to be unitilere, one may take More recently, Hammouda and Bauér0] have concluded
the parametes to denote the energy of interaction betweenthat the composition dependencexig; cannot be attributed
unlike units. The interaction energy in reduced units ist0 the compressibility of the mixture. Therefore, we consider
BE=x¢./q, where ¢, is the density of contacts between an in@mpressible system here. In the following, we take
unlike monomers and must be treated as a new and indepeXier= Xef= X $c/ddmedy, as our main emphasis is to study
dent density in addition to the composition. Thus, the enphase separation.
tropy S must also be a function of these two independent Thermodynamics requireSto be a function of two inde-
densities. Such an ensemble or any equivalent ensemble wifrendent densitieg,, and ¢, whene # 0, in addition to other
two variables is needed to provide a complete thermodyparameters. Consequently,; must depend, in general, on
namic description, the free energies of various ensembleg, molecular weight$1 andM’, x, and¢,, in any complete
being related by proper Legendre transforms. In the RMAtheory, notwithstanding the fact that the barés a param-
the following holds. eter in the lattice model; one does not need to invoke com-
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pressibility for such a dependence. We present a lattic

theory of the model of polymer blends and solutions that notespectively.
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¢he inequalities turning into equalities &— o or w—oo,
From the free energy o(¢,w)

only satisfies thermodynamics, but also predicts phase Sepa:—ﬂf(¢,w)=8(¢,¢c)+ écInw, customarily used in lit-

ration and yieldg¢ . that is consistent with experiments. The
theory provides closed form expressions for the entropy an
the free energy and is applicable everywhere.

Il. THERMODYNAMICS

Let the two species be denoted By and A’, both of
which may be polymers containingM=L+1 and

"=L'+1 monomers, or a polymemM>1) and solvent
(M’=1). Let ¢, and ¢, be their monomer densities, and
¢ and ¢’ be their bond densities:M@p=L¢,,,
M'¢' =L, . Further, letd,, ¢, , and¢. denote the den-
sities of unbondedAA pairs, unbondedA’A’ pairs, and
AA’ pairs, respectively. On the lattice, we have the follow-
ing identities: q¢n=2¢+2¢,+ ¢, qd=2¢" +2¢y
+ ¢¢, With ¢+ é;=1. The latter is the incompressibility
condition. Thus, we have only twiadependentlensities that
we take to bep or ¢, and ¢, in the following. Correspond-
ing to the densitiesp and ¢., we have two independent
activities that we denote by and w, respectively, with
w=exp(—Be). The total partition functiorZ of the lattice
model is[6] Z=3Q(q,M,M’,B,N.)KBwNe, where) is the
number of ways of putting the polymer mixture on the lattice
of N sites and the sum is over all possible value8Baodnd
N., consistent withN, q, M, andM'. Here,B is the total
number of bonds of alh polymers and\., is the number of
nearest-neighboAA’ monomer pairs. We have shown ex-
plicitly the entire set of quantitie@xcludingN) ) depends

erature[4] because the ensemble with fixel and T are
@asily prepared in experiments, we have

ol dp=—Bu, ©)

the inequality again turning into an equality \&s- . Thus,
¢ must be a monotonic increasing functionvef

For w=1, we have an athermal mixture. In this
case, we can introducé).(gq,M,M’,B) by summing
Q(q,M,M’,B,N,) over all possible values dfl. consistent
with a fixedN, g, M, M’, andB. The partition function now
becomesZ =2 Q (q,M,M’,B)KB. Hence, Q> Q, i.e.,
S S(x=0): the entropyS achieves its maximum value in
the athermal statis] and decreases from its maximum value
S.n=1nQ/N as interactions are introduced. Thus, the
athermal entropy is the maximum possible entropy and oc-
curs whenBe=0, i.e.,w=1.

Forw=1, and simple fluids M=M'=1), ¢ is given
exactly byq52=qum¢,’n For polymers, we expect the value
of ¢, to be smaller: The proximity of monomers of a given
species required for bonding is equivalent to reducing un-
bonded bond densitiesp,,= P+ dJ/2 and ¢;,,= di
+ ¢.J/2 and, thereforeg. must decrease. This argument
must be valid even when interactions are present. Therefore,

be(X)<be(X), (4)

the caret indicating simple fluids. For fixed we can treat
¢ to depend oy, M, M', ¢,, andw. Hence, x5 is also a

(dpclow) ,>0,

on, even though we will usually only exhibit the dependencenciion of these variables. We do not need compressibility

on B and N, (or, equivalently,¢ and ¢.) in the following
for convenience.

to account for such dependence.
We can summarize the thermodynamics of the model by

For a system in which polymers are of a fixed length, asne following fundamental thermodynamic relations:
we consider here, an entire polymer must be added or re-

moved from the system. Therefor§" acts as the activity

dS=—pBude+peddp.=—pBudé+ BdE,

per A molecule. With this understanding, there is no harm in

thinking of K as the activity per bond. The constraint of
fixed-length polymers is taken care of by it contains only
thoseconfigurationghat are consistent with having polymers
of fixed lengths. In cas@ denotes a monomeric speci&s,
must be replaced by the number of monomers. Nwje-
notes the activity for a monomer.

Let us introduce the entrop$(¢,d.)=InQ/N, where
¢=BIN and ¢.=N_./N in the thermodynamic limilN— oo
that is always implied below. Notice th&is a function of
two densitiesp and ¢, corresponding to two activitie§ and
w. To be preciseBu=InK is the reduced chemical potential
for the bond densityp. In equilibrium, the reduced free en-
ergy w=InZ/N=—F/T is a function ofK andw, and is re-
lated to the entropy by the Legendre transform
o(K,w)=— BF(K,w)=S(¢, d;) + pInK+ ¢Jnw, with

dSIdp=—InK=—Bu, dSdp.=—Inw=Be. (1)

From the convexity of the free energy, we observe that
(9l oK) >0,

(d¢pc/dw) >0, )

— Bud¢—s p.dB=—BdF,
do=¢d(Bu)— s p.dB=— BdF.

dw
®)

Ill. NEW THEORY

We now present a theory which is an extension of a
theory of polymer solutionsM’'=1) developed recently
[16] to the present casé’ >1). We approximate the lattice
by an infinite tree(Bethe latticg of the same coordination
number, on which the model is solved exactly. This ensures
that thermodynamics islways satisfied. Moreover, it has
been argued recently that the Bethe lattice calculations are
also superior to mean-field theorigk?7]. The method of so-
lution on the tree is standard and well knoWi8]. There-
fore, we only quote results for a binary system. Extensions to
multicomponent systems is straight forward and will be re-
ported elsewhere.

We break the total chemical potential= w4t pine @nd
the total entropyS= S+ S into athermal and interaction
parts, the latter vanishing in the athermal limit. We find

(r=gq-1)
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FIG. 1. x= xex/q for w=0.5 andq=6, 8, and 1Q0see arrows
for a solution(filled symbols and left axjsand for a symmetric
blend (empty symbols and right axis

Bar=(1L)In($n/g)— (m/m'L")In(¢b)/g")
+(1-m/m")In(2¢,/qr), (6)

Buim=(qm/2)[(n/m)|n(¢a/¢2)—(n’/m’)ln(¢;/¢;°)](, :
.

San= (a/2)Inr — pIn( P /9) — HIN( P /9")
+ ¢yIn(2¢,/qr), )]

Si= BaIn( P ¢2) + dLN(L 2) + den( Y be), (9)

where¢,= ¢,,/M and ¢/ = ¢, /M’ are number densities of
the two speciesg,= ¢myt Pmu=0/2— (¢p+ ¢’) is the den-
sity of all chemically unbonded bondsm=M/L,
m'=M'/L',n=m—2/q,n"=m’—2/q, andg (org’) is 1 or
g/2r if M (or M’) is 1 or larger, respectively. For=1,
ba=ba=dmd by, bo=do= b/ by, and b= g
=2¢mudmd ¢u- This ensures that,=0 andS,;=0 when
w=1. For w=1, ¢.=¢2=2/¢2¢°. If now q—oo,
bc—qPmedr - Thus, the FHT corresponds w—1, g—,
as claimed earlief16].

In order to derive Eq¥6)—(9), we first obtainw andK in
terms of densities so that we can use them in @g. We
integrate Eq(1) to obtainS. The constant of integration is
fixed by matching the present entropy #f=0 (this repre-
sents a melt oA polymers with that obtained in Ref.16].
Thus, S is obtained uniquelyon the Bethe lattice For w,
we obtain

W= ¢c/2\/¢a¢é! (10)

as was also the case for polymer solutiph8]. Incidentally,
Eq. (10) was earlier derived by Rushbrook&9] in one di-
mension and by Guggenhei0] for the general case using
a very different method.

We use Eq.(10) to obtain ¢, and y.s. We show
X=xei/q for g=6, 8, and 10w=0.5, in Fig. 1 and for
w=0.7, 0.8, and 0.9,q=6, in Fig. 2 for a solution
(L=1000, L'=0, full symbolg and a symmetric blend
(L=L"=1000, empty symboJs Note xpend< Xsolution: the

FIG. 2. x for w=0.7, 0.8, and 0.9, top, middle, and lower pair,
respectively, as arrow indicates. See legend for Fig. 1.

difference decreasing as—1. The minimum in xsoution
moves towardp,,=0 asw— 1, thus makingy sgion alMost
monotonic. For the symmetric blend, the minimum stays at
bm= %

The free energyw is also easily calculated and broken
into w4, and e, the latter vanishing whew=1:

(" %l duda),

1 2
Win=5| 972+ o7

!

1 1
wacher - Wln(¢,’1/g’)+ E

2
q—2+ W) In(2¢,/9q).
(11

The free energyw depends on quantities pertaining to the
primed species for which no activitisimilar to K) is al-
lowed in the partition functioriand the densityp,, of chemi-
cally unbonded bonds for which, again, no activity is al-
lowed. Thus,® denotes the adimensional osmotic pressure
through a membrane across which the primed species is al-
lowed to migrate and is always non-negative.

For w>w,, see below, there is a line of critical
points as M—o at K=K (w)=(\"/r)"™M'wl~", where
N =g'(M’'—=2L'/q). Forw<w,, the theory predicts phase
separation betweeA- and A’-rich phases. Both results can
be checked easily. The critical point for phase separation is
given by

we=1a(Vpp' —1)/(a+p), (12)

with p=Mr’'+1, p'=M'r'+1,r'=q—2, anda=M/M’.

For q—, we find thatw,—1—(yM+M")22qMM".
Hence,x.= — qlinw.—(yYM + VM ")2/2MM’, obtained in the
FH approximation. AsM —o, w.—w,=+1—1/p’' at the
#-point K=K ,=K.(wy,), w=w,, M—o which is a tricriti-

cal point in our theory(see Ref.[16]). For g—~, or
p'—o, W,—1 as suggested earlier. For simple fluids, one
must setM =M'=1 in the above theory. Thus, our theory
also provides a consistent theory of a simple fluid.
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V. CONCLUSIONS problems appear at low temperatures. Consider the specific

We conclude with the followin S heat C, for large q in this theory for a solution:
g two observations: Ina " e , 2 .12y 2

continuum theory, we do not have any geometrical con—C¢:C0[1f(¢’m__ bme” + (1~ 12¢m¢pm+ 18ndy)e™ /2],
straints betweenp,, ¢., and ¢, as on a lattice, see the Where ¢y is the solvent density and Co
beginning of Sec. II. Therefore, one cannot reduce the prob=2(x#m®m)/q>0. It is evident thaC,, is not necessarily
lem to two independent densities. In general, all three paifon-negative. For example, faf,=¢'=3, C, is negative
densities must be treated as independent. Hence, we needf@ |¢*|=1.5. Thus, the theory is valid only at high tempera-
introduce three independent parameters. It is only on a tures. The problem is worse for the Pesci-Freed theory
lattice that a suitable combination of the thregarameters [14(b)] which, according to Dudowicz, Freed, and Madden
uniquely describes the statistical mechanics of the binary14(@], should be valid in thev—c limit. In this theory
system. Thus, no justification can be offered for a latticeC,=Co—2[Ag+A;+3(Ag+Ag)1dmd,, Where Ag, A,
theory containing two combinations, as is the case in thé\g, (polymen, and A; (solveny are given in Ref[14(b)].
theory by Lipson21]. Such a theory necessarily disregardsAgain, C, need not be non-negative. For example, take
the geometrical constraints imposed by the lattice. ¢n=0.9, thenC is negative for alls* =—0.3. Since the

The theories presented by Batsal. [8] and by Dudow-  expansion terms have no definite signs, the problem will per-
icz, Freed, and Maddefil4(a)] do provide a complicated sist even if one goes to higher orders. In any case, the trun-
behavior of the effectivee parameter(The effectivey there  cation becomes invalid as phase transitions are approached
is defined in a different way than we havélowever, the because of associated singularities in thermodynamic quan-
theory by Bateset al. [8] violates the fundamental thermo- tities.
dynamic relation ¢¢./dw),>0 [see Eq.(3)] which states
that the specific heat must be non-negative. It is easy to

calculate the specific he&, at constanip using the result V. SUMMARY

given in Ref.[8]. We find C 4= C(¢bmed ) ¥ \Ixs— x| <0, In summary, we have shown thaj or xs must depend
where C is an uninteresting negative quantity and is  on ¢,, andw. We have presented a theory of blendsd
quoted in Ref[8]. solutiong that seems to exhibit qualitatively correct behav-

A similar problem occurs in the lattice cluster theory of ior. This is a closed form lattice theory of an incompressible
Fred and co-worker§14] because of the error introduced system valid everywhere, including low temperatures. In
by truncation. The free energy is given as a finite-ordercontrast, some of the more recent theories are not.
polynomial ine* (which in our notation is 28) and 14.

The expansion is carried out about the paifit=1/g=0.
Hence, the truncation is valid near the expansion point, the
expansion being a high-temperature expansion. From a com- | would like to thank Mukesh Chhajer, Mark Foster, Don
parison with Monte Carlo simulations, it has been suggesteticintyre, and Jong-Hoon Ryu for various illuminating dis-
that the theory due to Dudowicz, Freed, and Madditta)]  cussions, and Ben Widom for clarifying the subtleties of the
is highly reliable for |¢*|<0.3 for q=6. However, RMA.
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